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Least Squares Regression of a Circle to Time Series Cartesian Data 
 
W. Keith Adams, P. E. 
03 August 2010 
 
Derived is a least squares regression of a circle to uniform time series data of x and y 
coordinate pairs.  A constant angular velocity is assumed.  A solution using numerical 
methods is demonstrated. 
 
The fit of a circle to pairs of x-y coordinates has an elegant closed-form solution 
described by Galer (1), and independently derived by others.  The minimization of the 
variation of the radii is the basis of the derivation, and the result is known to be sensitive 
to noise.  Specifically, the mean radius is usually attenuated by the presence of noise in 
either, or both, the x and y coordinates.  An interactive animation by the author 
demonstrates this effect graphically. 
 
Use of the time stamp allows for a formulation that is less sensitive to noise, but requires 
an iterative solution.  The sum squared error between points uniformly spaced along an 
arc and the observed data is the objective function that is minimized.  The form of the 
data need only be an arc, not a complete circle. 
 
The sum of the squares objective function is: 
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where: 
 

 =0x  x coordinate of model circle center    

 =0y  y coordinate of fit circle center 
 =r  radius of fit circle 
 =ω  angular velocity of fit circle 

 =φ  phase angle of fit circle 

 =ix  x coordinate of ith observation  

 =iy  y coordinate of ith observation 

 =it  time at ith oservation 

 =∑ 2ε  sum of the errors squared 
 =n  number of observations  
 
The distance between each observation and its corresponding point along the arc is 
squared, and summed, creating the objective function. 
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 The expanded objective function is: 
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The full derivation is in the Appendix.  The partial derivatives result in these expressions 
for the model circle center and radius: 
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Note that solution for the radius is not quite like the arithmetic mean in the Galer 
derivation. 
 

The partial derivatives of φ  and ω  yield these two equations: 
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Solution 
 

1. Use Galer method to get initial value of center coordinates 
2. Create vectors of angle and time from initial center coordinates and data 
3. Unwrap angle-time vectors (ATAN2 returns angles between +/- 180 degrees) 
4. Calculate initial values of angular velocity from linear regression of angle by time 
5. Calculate initial values of phase angle from linear regression of angle by time 
6. Use cascaded Newton’s Method to find approximate zero values of (22) and (26)  
7. Construct target data, including noise 
8. Compare regression results with parameters used to construct target data  
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Demonstration spreadsheet:  17_Circle_Fit_3_v09.xls 
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Appendix A 
Derivation 
Least Squares Regression of a Circle to Time Series Cartesian Data 
 
W. Keith Adams, P. E. 
16 July 2010 
 
Derived here is a least squares regression of a circle to uniform time series data of x and 
y coordinate pairs.  A constant angular velocity is assumed.  A solution using numerical 
methods is demonstrated. 
 
The fit of a circle to pairs of x-y coordinates has an elegant closed-form solution 
described by Galer (1), and independently derived by others ().  The minimization of the 
variation of the radii is the basis of the derivation, and the result is known to be sensitive 
to noise ().  Specifically, the mean radius is always attenuated by the presence of noise 
in either, or both, the x and y coordinates.  An interactive animation by the author 
demonstrates this effect graphically. 
 
Use of the time stamp allows for a formulation that is less sensitive to noise, but requires 
an iterative solution.  The sum squared error between points uniformly spaced along an 
arc and the observed data is the objective function that is minimized.  The form of the 
data need only be an arc, not a complete circle. 
 
The sum of the squares objective function is: 
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where: 
 

 =0x  x coordinate of model circle center    

 =0y  y coordinate of fit circle center 
 =r  radius of fit circle 
 =ω  angular velocity of fit circle 

 =φ  phase angle of fit circle 

 =ix  x coordinate of ith observation  

 =iy  y coordinate of ith observation 

 =it  time at ith oservation 

 =∑ 2ε  sum of the errors squared 
 =n  number of observations  
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The expanded variance equation is: 
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Take the partial derivative with respect to each of the unknowns and examine what 
substitutions are possible for the resulting system of equations. 
 
First, partial derivatives with respect to the origin of the model circle: 
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Take the partial derivative with respect to the radius of the circle: 
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Let: 
( )φω += ii tC cos      and    ( )φω += ii tS sin  
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Substitution of x0 and y0: 
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Note that solution for the radius is not quite like the arithmetic mean in the Galer 
derivation. 
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Take the partial derivative of (3) with respect to the phase angle of the circle: 
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Since the solution will use Newton’s Method, the partial derivative of (22) with respect to 
phi will be necessary.  One could use an approximate derivative. 
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Take the partial derivative of (3) with respect to the angular velocity: 
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The partial derivative of (26) with respect to omega is: 
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It is necessary to find the partial derivatives of r, x0, and y0 with respect to phi and 
omega, to find (23) and (27). 
 
From (18): 
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From (7): 
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From (10): 
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