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Derived is a least squares regression of a circle to uniform time series data of x and y
coordinate pairs. A constant angular velocity is assumed. A solution using numerical
methods is demonstrated.

The fit of a circle to pairs of x-y coordinates has an elegant closed-form solution
described by Galer (1), and independently derived by others. The minimization of the
variation of the radii is the basis of the derivation, and the result is known to be sensitive
to noise. Specifically, the mean radius is usually attenuated by the presence of noise in
either, or both, the x and y coordinates. An interactive animation by the author
demonstrates this effect graphically.

Use of the time stamp allows for a formulation that is less sensitive to noise, but requires
an iterative solution. The sum squared error between points uniformly spaced along an
arc and the observed data is the objective function that is minimized. The form of the
data need only be an arc, not a complete circle.

The sum of the squares objective function is:

2= ;[(Xo‘” cos(at; +@)-x; f + (Yo +rsin(et; +¢)-v, ﬂ @)
where:

Xo = x coordinate of model circle center

Yo = y coordinate of fit circle center

I' = radius of fit circle

@ = angular velocity of fit circle

¢ = phase angle of fit circle

Xi — x coordinate of ith observation

yi =y coordinate of ith observation

ti = time at ith oservation

2
Zc‘f = sum of the errors squared
N= number of observations

The distance between each observation and its corresponding point along the arc is
squared, and summed, creating the objective function.
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The expanded obijective function is:

det= i[xé +y2 +2r(%, — X, )cos(at; + )+ 2r(y, — y; )sin(at, +@)— 2%,X, — 2y, y; +° + X2 +y?] (3)

The full derivation is in the Appendix. The partial derivatives result in these expressions
for the model circle center and radius:
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Note that solution for the radius is not quite like the arithmetic mean in the Galer
derivation.

The partial derivatives of ¢ and @ yield these two equations:

insi_xozsi_zyici+yozci =0 (22)
i=1 i=1 i=1 i=1
insiti _onsiti _zyiciti + yOZCiti =0 (26)
i=1 i=1 i=1 i=1
Solution
1. Use Galer method to get initial value of center coordinates
2. Create vectors of angle and time from initial center coordinates and data
3. Unwrap angle-time vectors (ATAN2 returns angles between +/- 180 degrees)
4. Calculate initial values of angular velocity from linear regression of angle by time
5. Calculate initial values of phase angle from linear regression of angle by time
6. Use cascaded Newton's Method to find approximate zero values of (22) and (26)
7. Construct target data, including noise
8. Compare regression results with parameters used to construct target data
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Demonstration spreadsheet: 17_Circle_Fit_3_v09.xls
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Appendix A
Derivation

Least Squares Regression of a Circle to Time Series Cartesian Data

W. Keith Adams, P. E.
16 July 2010

Derived here is a least squares regression of a circle to uniform time series data of x and
y coordinate pairs. A constant angular velocity is assumed. A solution using numerical
methods is demonstrated.

The fit of a circle to pairs of x-y coordinates has an elegant closed-form solution
described by Galer (1), and independently derived by others (). The minimization of the
variation of the radii is the basis of the derivation, and the result is known to be sensitive
to noise (). Specifically, the mean radius is always attenuated by the presence of noise
in either, or both, the x and y coordinates. An interactive animation by the author
demonstrates this effect graphically.

Use of the time stamp allows for a formulation that is less sensitive to noise, but requires
an iterative solution. The sum squared error between points uniformly spaced along an
arc and the observed data is the objective function that is minimized. The form of the
data need only be an arc, not a complete circle.

The sum of the squares objective function is:

Yot =3 (% +r cos(@t +4)-x ) +(Yo+rsin(eti +4)-;) | 1)
where:

Xo = x coordinate of model circle center

yo = y coordinate of fit circle center

I' = radius of fit circle

@ = angular velocity of fit circle

¢ = phase angle of fit circle

Xi = x coordinate of ith observation

yi — y coordinate of ith observation

ti = time at ith oservation

2
25 = sum of the errors squared
N= number of observations
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The expanded variance equation is:

Det= i[xg + 2%, cos(at, + §)— 2x,1 cos(at, + @) — 2%, X, + 12 cos?(at; +§)+ X2 |+ .
i=1

j[yg + 2y rsin(at, +¢)—2y,rsin(at, +¢)—-2y,y, +r’sin?(at, +¢)+ yf] 2)

i=1

Y et= i[xg +y2 +2r(x, — x; )cos(at, +¢)+2r(y, — v, )sin(at, +¢)— 2%, %, —2y,y; +r2 + X7 + yf] 3)

i=1

Take the partial derivative with respect to each of the unknowns and examine what
substitutions are possible for the resulting system of equations.

First, partial derivatives with respect to the origin of the model circle:

L3 e =3l ) 2rcos(ot + -0 @
3:[f - x )+ roos(at, + 9]=0 (5)
v = 3] 3 feos(at, + ) (6)
. :g[xj_rg[cos(wt. +9) -
ayionz =3[y, - i)+ 21y sinfat, + 9]=0 ®)
=3[y ] r fin(et, + o) )
- 2l fintar,+o) (10

Take the partial derivative with respect to the radius of the circle:

gz‘sz :Z[Z(xo —x; )eos(at, + @)+ 2(y, — v, )sin(at; +¢)+2r]=0 (11)
3l Jcos(at, +¢)+ (v, — y,Jsinfat, +9)+ 1]=0 (12)

i=1
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Let:
C,=cos(et, +¢) aNd s —sin(at, +4)
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. [(XO_Xl)Cl +(Y0_yi)Si -H‘]:O

xoicI —ixlci + yozn:S, —Zn:y,S, +nr=0
i=1 i=1 i=1 i=1

Substitution of X, and yo:

in Zci n n Zyl ZSI n n
i=1 _riz ZCI _inci+ i=1 i ZS' Zyi8i+nr:0
n n i=1 i=1 n i=1 i=1

Zn:xiici —ch Zc, —nix,c, +zn:y,zn:s, —rzn:s,zn:s, —nZy,S +n’r=0

i=1 i=1 i=1 i=1 i=! i=1 i=1 i=1 i=1

nzr—an:CiZn:Ci —risiisi = nzn:x,C, Zn:x,zn:C, +nzn:y,8, —Zn:y,zn:S,
i=1 i=1

i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=!

(13)

(14)

(15)

(16)

(17)

(18)

Note that solution for the radius is not quite like the arithmetic mean in the Galer

derivation.

252 = i[x(f +yo+ 2r(Xo - Xi)COS(a)ti +¢)+ Zr(YO —Yi )Sin(a’ti +¢)_ 2XpX; = 2Y,Y; + 12+ X7 + Yiz]

i=1

(3)

Take the partial derivative of (3) with respect to the phase angle of the circle:

725 _Izl:[Zr X, — X, )sin(at; + @)+ 2r(y, -y, )cos(at, +¢)]=0

n

2[00 = )sin(at, + )+ 3 [y - . Jeos(a, + 9]0

%8,)+ (4., - ,C.)=0

x,S,—xOZS Zy +y0iC,:0
i i=1
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Since the solution will use Newton’s Method, the partial derivative of (22) with respect to
phi will be necessary. One could use an approximate derivative.

;[ixisi _Xoisi _iyici + yoicij :ixici _Xoici _[Z)Zjisi +iyisi _YOiSi +[?:2]ici (23)

Take the partial derivative of (3) with respect to the angular velocity:

ai £ =3 [2rt, (¢, x, Jsin(at, +¢)+ 21t,(y, - y, Jeos(at, + )]0 (24)
3 [t (6~ o )sin(at, + )+, (v, - v, )eos(at, + ¢)]=0 (25)
Zn:XiSiti - XOZH:Siti _Zn:yiciti + yozn:citi =0 (26)

The partial derivative of (26) with respect to omega is:

a[i XiSit; — onn: St - Zn: yiCit; + YOZn:Citi] =
oo\ T i1 i1 i1

Zn: XxCit? — xozn:Citf _% Z St + Z y,St2 - yozn: St + %anciti (27)
i=1 i-1 0w 3 i-1 i=1 o =

It is necessary to find the partial derivatives of r, X, and y, with respect to phi and
omega, to find (23) and (27).

From (18):
% D Y)Y I I

or _nzn:tixisi +Zn‘,xizn:tisi +nzn:tiyici _iyiitici
i1 iz i i1 T G

i=1

[N [N
[Ziciitisi 72itlci " S.][nzn: YiSi - > Y,ES, + nixic, —Zn:x,iclj (29)
R i-1 i-1 i-1 ! i-1 ==
n n n n 2
[nz_ZCI C.-).S S,J
i=1 i=1 i=1 i=1l

From (7).

wka001_vO01 7 03 August 2010



n

6] > foslat, + 9]

7r|

ao_r;tisi_a ;CI
dow n dw n
From (10):

Yyl Shinta, +9)

Yo =

C, nS-
B0 xS

6¢_n67¢n

ayo ztici or ; Si

do  n oo n

wka001 v01

(7)

(30)

(31)

(10)

(32)

(33)

03 August 2010



